Algebro-geometric Poisson Brackets for Real Finite-zone Solutions of the Sine-gordon Equation and the Nonlinear Schrödinger Equation

نویسندگان

  • B. A. DUBROVIN
  • S. P. NOVIKOV
چکیده

Algebro-geometric Poisson brackets for real, finite-zone solutions of the Korteweg–de Vries (KdV) equation were studied in [1]. The transfer of this theory to the Toda lattice and the sinh-Gordon equation is more or less obvious. The complex part of the finite-zone theory for the nonlinear Schrödinger equation (NS) and the sine-Gordon equation (SG) is analogous to KdV, but conditions that solutions be real require serious investigation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New study to construct new solitary wave solutions for generalized sinh- Gordon equation

In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.

متن کامل

A Combined Sine-gordon and Modified Korteweg{de Vries Hierarchy and Its Algebro-geometric Solutions

We derive a zero-curvature formalism for a combined sine-Gordon (sG) and modi-ed Korteweg{de Vries (mKdV) equation which yields a local sGmKdV hierarchy. In complete analogy to other completely integrable hierarchies of soliton equations, such as the KdV, AKNS, and Toda hierarchies, the sGmKdV hierarchy is recursively constructed by means of a fundamental polynomial formalism involving a spectr...

متن کامل

Generalized solution of Sine-Gordon equation

In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.

متن کامل

A Local Sine-gordon Hierarchy and Its Algebro-geometric Solutions

We derive a new zero-curvature formalism for the sine-Gordon (sG) equation which permits the introduction of a local sine-Gordon hierarchy (in contrast to the traditionally accepted nonlocal higher-order sG equations). In complete analogy to other completely integrable hierarchies of soli-ton equations, such as the KdV, AKNS, and Toda hierarchies, our local sG hierarchy is recursively construct...

متن کامل

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007